Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens

نویسندگان

  • Pauliina Halimaa
  • Daniel Blande
  • Mark G. M. Aarts
  • Marjo Tuomainen
  • Arja Tervahauta
  • Sirpa Kärenlampi
چکیده

The metal hyperaccumulator Noccaea caerulescens is an established model to study the adaptation of plants to metalliferous soils. Various comparators have been used in these studies. The choice of suitable comparators is important and depends on the hypothesis to be tested and methods to be used. In high-throughput analyses such as microarray, N. caerulescens has been compared to non-tolerant, non-accumulator plants like Arabidopsis thaliana or Thlaspi arvense rather than to the related hypertolerant or hyperaccumulator plants. An underutilized source is N. caerulescens populations with considerable variation in their capacity to accumulate and tolerate metals. Whole transcriptome sequencing (RNA-Seq) is revealing interesting variation in their gene expression profiles. Combining physiological characteristics of N. caerulescens accessions with their RNA-Seq has a great potential to provide detailed insight into the underlying molecular mechanisms, including entirely new gene products. In this review we will critically consider comparative transcriptome analyses carried out to explore metal hyperaccumulation and hypertolerance of N. caerulescens, and demonstrate the potential of RNA-Seq analysis as a tool in evolutionary genomics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

De novo transcriptome assemblies of four accessions of the metal hyperaccumulator plant Noccaea caerulescens

Noccaea caerulescens of the Brassicaceae family has become the key model plant among the metal hyperaccumulator plants. Populations/accessions of N. caerulescens from geographic locations with different soil metal concentrations differ in their ability to hyperaccumulate and hypertolerate metals. Comparison of transcriptomes in several accessions provides candidates for detailed exploration of ...

متن کامل

A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens

Noccaea caerulescens is an extremophile plant species belonging to the Brassicaceae family. It has adapted to grow on soils containing high, normally toxic, concentrations of metals such as nickel, zinc, and cadmium. Next to being extremely tolerant to these metals, it is one of the few species known to hyperaccumulate these metals to extremely high concentrations in their aboveground biomass. ...

متن کامل

Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils.

Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descend...

متن کامل

Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J. & C. PRESL).

Thlaspi caerulescens is a well-studied metal-hyperaccumulator of zinc, cadmium and nickel, belonging to the Brassicaceae family. Moreover it is one of the few hyperaccumulators that occur on different metalliferous soil types, as well as on nonmetalliferous soils. We are interested in the development of systems to improve phytoremediation of metal contaminated soils through improved metal-accum...

متن کامل

Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014